
Structure of Matter 2

Exam June 18, 2012. Tentamenhal 02, Blauwborgje 4, 9.00-12.00.

� Write your name and student number on each sheet you use.
� Read the problems carefully and give complete, clear, and readable
answers. Illegible answers will be discarded.
� You are allowed to use your books, lecture slides and your notes.
Use of a simple calculator is allowed.
� The exam has 4 problems.
� The max. points per question are indicated. Grade is calculated
from (total # pts + 10)/100.
� Answers may be given in dutch or english.

Problem 1

i In LCAO theory hybrid orbitals are formed by linear combination of degenerate orbitals
ψni with the same main quantum number n, and hence the same energy En (Hψni =
Enψni). Show that the energy of the hybrid wavefunction Φ =

∑
i αiψni is also equal to

En. [5 pts]

HΦ = H
∑

i αiψni
HΦ =

∑
i αiHψni.

HΦ =
∑

i αiEnψni
HΦ = En

∑
i αiψni

HΦ = EnΦ.

ii Why are hybrid orbitals not built from orbitals with different main quantum number?
[5 pts]

These are not eigenstates of the Hamilton operator.

iii By mixing s, px,py and pz 4 sp3 hybrid orbital are formed, yielding a tetragonal molecular
structure. AsCl5 is an example where a d orbital is also used: it is called sp3d hybridiza-
tion. Discuss the geometry of the AsCl5 molecule. How many electrons are there in each
orbitals? How many lone pairs are there? [5 pts]

The hybridization of sp3d orbitals will result in 5 new orbitals. The struc-
ture is the same as PCl5: 2 sp like orbitals along the + and − z-direction,
and 3 orbitals in the x-y plane (with 120o angles between them).
These 5 orbitals will each share 1 electron with one of the clorines. So
there are 10 shared electrons and no lone pair.

iv Which of the following molecules do you think would exist: PCl5, AsBr5, NCl5? Explain
your answer. [5 pts]
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The orbital structure of PCl5 and AsBr5 is similar to AsCl5, so one ex-
pects them to exist. The highest occupied orbitals of N have main quantum
number n = 2, and since there is no d-orbital in this case sp3d hybridization
will not be possible. NCl5 will probably not exist.

v A photon with an energy E interacts with a molecule. The ionization potential of the
molecule is I, the energetically highest vibrational mode has energy Ω. Discuss what kind
of information we can obtain using photon energies a) E ≤ Ω; b) Ω < E < I; c) E > I.
[5 pts]

a) The only possible process is direct absorption. This will give informa-
tion on the rotationial and vibrational degrees of freedom. b) One possible
process is inelastic (Raman) scattering yielding information on the rota-
tional and vibrational degrees of freedom (though usually not the same
as in a) due to the difference in selection rules). In addition, information
will be obtained on the electronically excited states through absorption.
c) In principle Raman scattering is still possible, but since usually the
ionizatioin cross section is much higher it is much more likely that a pho-
toemission process occurs. Hence we obtain information on the ionization
potential.

vi Is the vibrational structure observed in the optical absorption spectrum reflecting vibra-
tions of the excited state or of the ground state? Why? [5 pts]

Excited state. The initial state is predominantly the vibrational ground
state, the final state is typically a vibrationally (and electronically) excited
state.

Problem 2

The figure below shows the ro-vibrational Raman spectrum of oxygen gas recorded using an
excitation laser with a wavelength of 532 nm.
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i Discuss the origin of the peaks you observe [2 pts]

Central strong dense set of lines at 17657 cm−1 originates from stokes
transitions in which the vibrational quantum number changes by 1 (∆ν =
1) and the rotational quantum number does not change (∆J = 0).
The set of lines at lower energy correspond to ∆ν = 1 and simultaneously
∆J = +2.
The set of lines at lower energy correspond to ∆ν = 1 and simultaneously
∆J = −2.

ii The graph shows only a limited energy range. Do you expect that there will be other
active Raman modes in different energy range(s)? If so, what is their origin? [3 pts]

O2 has only one vibrational mode, for which the stokes scattering is dis-
played in the graph. The will also be anti-stokes scattering of this ro-
vibrational band around 19940 cm−1. The only other modes are the pure
librational which stokes and anti-Stokes scattering are found in the region
±50 cm−1around the laser energy.

iii What is the force constant of the molecular bond in oxygen? [3 pts]
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The laser energy is ωi = 107/532 = 18797 cm−1. The vibrational fre-
quency is therefore ω0 = 18797 − 17657 = 1140 cm−1(f0 = 34.1772
THz). The frequency f0 equals 1

2π

√
K/meff , with meff the effective mass

(= 0.5moxygen = 8 amu = 1.328×10−26 kg), and K the force constant. So,
K = (2πf0)

2 ×meff = 612.4 Nm−1.
Note that the real frequency of the oxygen vibration is 1554 cm−1, leading to K=1177 N/m.

iv For two of the smaller outer peaks of the spectrum the energy is indicated on the graph.
Use these frequencies to calculate the bondlength in the vibrationally excited state. [6 pts]

The bondlength can be determined from the rotational constant B1 in the
excited state. The total energy of a combined rotational and vibrational
state is given by

S(n, J) =

(
n+

1

2

)
ω0 +Bn · J(J + 1),

where Bn is the rotational constant of the molecule in vibrational state n.
For stokes transitions we have:
∆n = 1,∆J = −2 (O-branch)

ω = ωi−[S(n+ 1, J − 2)− S(n, J)] = ωi−ω0+(B0−B1)J
2+(B0+3B1)J−2B1

∆n = 1,∆J = 0 (Q-branch)

ω = ωi − [S(n+ 1, J)− S(n, J)] = ωi − ω0 + (B0 −B1)J
2 + (B0 −B1)J

∆n = 1,∆J = −2 (S-branch)

ω = ωi−[S(n+ 1, J + 2)− S(n, J)] = ωi−ω0+(B0−B1)J
2+(B0−5B1)J−6B1

For a given initial rotational state J the difference between the correspond-
ing O and S branch transitions are then

8B1J + 4B1

. We now only have to count which J the indicated peaks correspond to
(for the S-branch the first mode corresponds to J = 0, for the S-branch
to J = 2). We find J = 13, therefore the rotational constant is B1 =
17694.81−17618,69

8·13+4
= 0.7048 cm−1. The rotational constant (in cm−1) for a

homonuclear diatomic molecule is given by:

B =
~

4πcI
=

~
4πcmr21

From this one finds

r1 =

√
~

4πcmB1

= 122 pm
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v Find the bond length of the oxygen molecule in the vibrational ground state. [4 pts]

For this one can take either the energy of the transition from J = 13 in
the O- or S-branch. For the O-branch we have:

ωi − ω0 + (B0 −B1)J
2 + (B0 + 3B1)J − 2B1 =

18797−1140+(B0−0.7048)·132+(B0+3·0.7048)·13−2·0.7048 = 17694.81

so that B0 = 0.7189 cm−1. Using B1

B0
=

r20
r21

one finds that there is about 1

% difference r0 = 121 pm.

vi Estimate the temperature of the gas from the Raman spectrum [4 pts]

The intensity is proportional to the occupation of the modes which is in a
Boltzmann approximation (T >> Erot given by

NJ ∝ N(2J + 1)e−hcB·J(J+1)/kbT

The maximum intensity is found for

Jmax =

√
kT

2hcB0

− 1

2

leading to

T =
hcB (4J2

max + 4Jmax + 1)

2kb
= 50

hcB0

kb
≈ 50K

with Jmax ≈ 4.5 found from the graph.

Problem 3

The real space lattice of a simple cubic (sc) crystal is given by the three vectors: ~a1 = a·

1
0
0

,

~a2 = a ·

0
1
0

, and ~a3 = a ·

0
0
1

, with a as lattice constant (= side length of the unit cell).

i Proof that the reciprocal lattice of a sc lattice with vectors ~a1, ~a2, ~a3 is again a sc lattice
with vectors ~b1, ~b2, ~b3 by using the well-known relations between real space and reciprocal
space lattices. [4 pts]
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From the definiton of the reciprocal lattice, the vectors ~b1, ~b2, and ~b3 can
be calculated. The vector ~b1 ist defined as ~b1 = 2π (~a2×~a3)

~a1·(~a2×~a3) . If we insert

the values of the real space vectors ~a1, ~a2, ~a3 we therefore get:

~b1 = 2π (~a2×~a3)
~a1·(~a2×~a3) = 2π

a2·


1
0
0



a·

1
0
0

 ·
1

0
0


︸ ︷︷ ︸

=(1+0+0)=1

·a2

= 2π a
2

a3

1
0
0

 = 2π
a

1
0
0

. The

vectors ~b2 and ~b3 can be calculated analogously.

ii How many atoms per unit cell are there in (a) a sc lattice, (b) a bcc lattice, and (c) a fcc
lattice? [4 pts]

(a) There are 8 atoms at the corners of each unit cell, each of which is part
of 8 unit cells. So: 8× 1/8 = 1. There is 1 atom per unit cell.
(b) In addition to the corner atoms, there is 1 atom in the center of the
unit cell. So: (8× 1/8) + 1 = 2. There are 2 atoms per unit cell.
(c) In addition to the corner atoms, there are 6 atoms in the center of the
side planes of the unit cell. Each of these atoms is part of 2 unit cells. So:
(8× 1/8) + (6× 1/2) = 4. There are 4 atoms in every fcc unit cell.

iii Calculate the packing density of the sc lattice. Assume that the atoms are spheres which
are touching each other; i.e. the radii r of the spheres are given by r = a/2. Remember:
The volume of one sphere (i.e. atom) is Vsphere = 4

3
· π · r3. [3 pts]

The volume of one sphere (i.e. atom) is Vsphere = 4
3
· π · r3. The volume of

the cube is Vcube = a3 = (2r)3 = 8r3.
Since we only have one atom per unit cell, the filled fraction is simply:

f =
4
3
·π·r3

8r3
= 0.524. So, 52.4% of the space is occupied.

iv Find the Miller indices of the planes that intersect the crystallographic axes at the dis-
tances (a) (6x, 3y, 2z) and (b) (1x, 1y, 1z). Assuming a cubic lattice with a = 0.5nm,
what are the lattice plane distances for these two planes? [4 pts]

To determine the Miller indices of the lattice planes, we have to take the
inverse of the intersects with the crystallographic axes and multiply them
with a number so that each value is an integer number. (a) The inverse of
the intersects (6x, 3y, 2z) are 1/6, 1/3, and 1/2. If we multiply with 6 we
gain for the Miller indices: 1,2, and 3. So, the lattice plane is the (123)
plane.
(b) The inverse of the intersects (1x, 1y, 1z) are 1,1, and 1. We do not have
to multiply. So, also the Miller indices are 1,1, and 1. The corresponding
lattice plane is the (111) plane.
In a cubic lattice the lattice plane distance is calculated with: dhkl =

a√
h2+k2+l2

. For the present cases we get: d123 = a√
12+22+32

= 0.5 nm√
14

=

0.1336 nm and d111 = a√
12+12+12

= 0.5 nm√
3

= 0.2887 nm.
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v Draw a (3D) unit cell of a cubic lattice including the latter of the two planes of the
previous question. Which rotational symmetry does this plane have? [3 pts]

In the figure above a fcc unit cell with a (111) plane is shown. It gets
obvious that the (111) plane has a threefold symmetry/ a triangular shape.

vi How many atoms are there on this particular plane (per unit cell) in (a) a sc lattice, (b)
a bcc lattice, (c) a fcc lattice? From your findings, can you guess why this plane is a
special one in a fcc lattice? [3 pts]

As can be seen from the above figure, there are 6 atoms per unit cell on
the (111) plane in the fcc lattice. For a sc and a bcc lattice there are
only 3 atoms on this plane. Hence, the (111) planes in the fcc lattice
are equivalent to the closely packed layers of the ccp (cubic close-packed)
structure.
Remark: In terms of fractional atoms: SC & BCC 3/8 atoms; FCC 15/8 atoms. This is not the usual

way of expressing the number of atoms in the plane, but for this exam considered correct.

Problem 4

The dispersion relation of single particle charge excitations in a cubic superconductor (lattice
constant a) is given by E(k) =

√
α2 · k4 + ∆2

i Derive an equation for the density of states of these excitations, assuming that each state
k is spin degenerate [5 pts]

N(k) = 2 ·
4
3
πk3

(π
a
)3

∂N(k)

∂k
= V · 8k2

π2

D(E) =
∂N(E)

∂E
=
∂N(k)

∂k
·
(
∂E(k)

∂k

)−1
= V

8k2

π2
· 1

2

√
α2k4 + ∆2

α2k3

D(E) = 4V
E

π2α [α2 (E2 −∆2)]1/4

7



ii Sketch the density of states as a function of energy [2 pts]
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iii For ∆ = 0 the dispersion reduces to the free electron result. Can you give an expression
for α? [5 pts]

α =
~2

2m∗

iv Can you give a physical interpretation to ∆ ? [5 pts]

∆ is the superconducting energy gap parameter
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A list of some fundamental constants, definitions and relations

Constant Symbol Approximate Value
Speed of light in vacuum c 3.00× 108 m/s
Permeability of vacuum µ0 12.6× 10−7 H/m
Permittivity of vacuum ε0 8.85× 10−12 F/m
Magnetic flux quantum φ0 = h

2e
2.07× 10−15 Wb

Electron charge e 1.602176× 10−19 C
Electron mass me 9.11× 10−31 kg
Proton mass mp 1.673× 10−27 kg
Neutron mass mn 1.675× 10−27 kg
Proton-electron mass ratio mp

me
1836

Boltzman constant kb 1.3806503× 10−23 m2 kg s−2 K−1

Boltzman constant [cm−1] kb 0.6950356 cm−1

planck constant/2π ~ 1.05457× 10−34 J s

atomic mass unit (a.m.u.) amu 1.66053886× 10−27 kg
electron volt to Joule 1 eV 1.602176× 10−19 J
electron volt to wavenumber 1 eV 8065.395 cm−1

wavenumber to frequency 1 cm−1 29.98 GHz
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